Annual Drinking Water Quality Report #### IN5291002 # BROOKSTON WATER DEPARTMENT Annual Water Quality Report for the period of January 1 to December 31, 2018 This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water. For more information regarding this report contact: Name Josh Denlinger Phone 765-563-6412 **BROOKSTON WATER DEPARTMENT is Ground Water** Este informe contiene información muy importante sobre el agua que usted bebe. Tradúzcalo ó hable con alguien que lo entienda bien. # Sources of Drinking Water surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791. Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and - discharges, oil and gas production, mining, or farming. Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater - Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses - and can also come from gas stations, urban storm water runoff, and septic systems Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water Some people may be more vulnerable to contaminants in drinking water than the general population concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office. Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from available from the Safe Drinking Water Hotline (800-426-4791). Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing materials and components associated with service lines and home plumbing. We cannot control the variety of materials used in plumbing components. When your methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from Hotline or at http://www.epa.gov/safewater/lead water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot contro If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from ### Source Water Information | WELL#4 | WELL#3 | Source Water Name | SWA = Source Water Assessment | |-----------------------------------|-----------------------------------|-------------------|-------------------------------| | > | В | | | | GW | GW | Type of Water | | | Active | Active | Report Status | | | South of Eighth St. and Davis St. | South of Eighth St. and Davis St. | Location | | #### Coliform Bacteria #### Lead and Copper Definitions: Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting water for drinking or cooking. If you are concerned about lead in your water, and the potential water for drinking or cooking. If you are concerned about lead in your water, and the potential water for drinking or cooking. If you are concerned about lead in your water, and the potential water for drinking or cooking. If you are concerned about lead in your water, and the potential water for drinking or cooking. If you are concerned about lead in your water, and the potential water for drinking or cooking. If you are concerned about lead in your water, and the potential water for drinking or cooking. http://www.epa.gov/safewater/lead. you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at | preservatives; Corrosion of household plumbing | | | | | | | | | |---|-----------|-------|-----------------|-----------------|---|------|--------------|-----------------| | Erosion of natural deposits; Leaching from wood | z | ppm | 0 | 0.009 | 1.3 | 1.3 | 2018 | Copper | | | | | | | | | | | | 0.410 | | | | | | | | | | Likely Source of Contamination | Violation | Units | # Sites Over AL | 90th Percentile | Action Level (AL) 90th Percentile # | MCLG | Date Sampled | read and copper | # Water Quality Test Results Definitions: Avg: Maximum Contaminant Level or MCL: Level 1 Assessment: The following tables contain scientific terms and measures, some of which may require explanation Regulatory compliance with some MCLs are based on running annual average of monthly samples The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment found in our water system. A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been # Water Quality Test Results Maximum Contaminant Level Goal or MCLG: Level 2 Assessment: Maximum residual disinfectant level or MRDL: Maximum residual disinfec Maximum residual disinfectant level goal or MRDLG: ppb: ppm: Treatment Technique or TT: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. not applicable. millirems per year (a measure of radiation absorbed by the body) micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water. milligrams per liter or parts per million - or one ounce in 7,350 gallons of water. A required process intended to reduce the level of a contaminant in drinking water. # Regulated Contaminants | Disinfectants and Disinfection By-Products | Collection Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL | Units | Violation | Likely Source of Contamination | |--|-----------------|---------------------------|-----------------------------|-----------------------|-----|-------|-----------|--| | Haloacetic Acids (HAA5) | 2018 | 4 | 3.7 - 3.7 | No goal for the total | 60 | ppb | z | By-product of drinking water disinfection | | Total Trihalomethanes
(TTHM) | 2018 | N | 1.5 - 1.5 | No goal for the total | 80 | dad | z | By-product of drinking water disinfection | | Inorganic Contaminants | Collection Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL | Units | Violation | Likely Source of Contamination | | Barium | 08/09/2017 | 0.204 | 0.204 - 0.204 | 2 | 2 | ppm | z | Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits. | | Fluoride | 08/09/2017 | 0,475 | 0.475 - 0.475 | 4 | 4.0 | ppm | z | Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories. | | Nitrate [measured as
Nitrogen] | 2018 | _ | 0.536 - 0.536 | 10 | 10 | ppm | z | Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits. |